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Introduction
In this tutorial, we will examine how to calculate an ANOVA by hand and using R. We will focus on the
interpretation. The initial example will use a between-subjects one-way ANOVA, so called because it involve
one independent variable. However, I will also show R code for a between-subjects factorial ANOVA, which
involves more than one indpendent variable.

Problem Statement
A researcher is interested in the effects of mindfulness affects test anxiety. Prior to an exam, students were
grouped into one of three experimental conditions: mindfulness, conversation, and control. The mindfulness
group spent 15-minutes focusing on their breathing and the conversation group spent 15-minutes having a
friendly conversation with a researcher. Following the 15-minute period, the participants rated their anxiety
on a 10-point scale about the upcoming exam on a 10-point scale. The control rated their anxiety immediately
upon getting to the exam. Here are the results:

Control Mindfulness Conversation
10 4 5
8 4 6
6 2 5
8 2 6

x̄ctrl = 8 x̄mind = 3 x̄conv =5.5 x̄ = 5.5

Note that we have a sample mean for each group and an overall mean (denoted with x̄ here), which we call
the grand mean. We want to know whether the population means differ between the three conditions.

t-tests
One way we could analyze this experiment is to conduct multiple t-tests. We could contrast Control v.
Mindfulness, Control v. Conversation, and Mindfulness v. Conversation. This strategy is known as making
all-pairwise comparisons. However, this method would increase our type I error because each test has a
specified alpha. If we use an alpha of .05, then our type I error rate across all three contrasts (called the
experiment-wise error rate) is 1 − (.95 ∗ .95 ∗ .95) ≈ .143.

One solution that will help keep our type I error rate at .05 is apply a correction. Conceptually, the easiest
choice is to make a Bonferroni correction, which involves dividing the experiment-wise alpha by the number
of tests conducted and using that value for each test. In our case, this would mean running each t-test with
an alpha of .05

3 ≈ .017. We will make use of this approach later. For now, just know that it significantly
reduces our statistical power (i.e., our ability to reject the null hypothesis), especially when we are making
many comparisons. ANOVA offers an alternative solution.
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One-way ANOVA
Null Hypothesis
The (typical) null hypothesis of an ANOVA is that the population means are equal. In symbols, this is given
by

µ1 = µ2 = µ3 = µn

where n is any number of means. The alternative hypothesis is that there is at least one population mean
that is not equal. This is harder to put in symbols. Note that rejecting the null hypothesis is equivalent to
saying that the populations means are not equal, but we do not know which mean differs from which other
mean. I will come back to this point below.

Sum of Squares
The result is an F -test. To get an F -statistic, we will need to calculate sum of squares and degrees of freedom.
Remember,

SS =
N∑

i=1
(xi − x̄)2

For each group, we will calculate SS in three different ways.

1. SStotal =
∑N

i=1(xi − x̄)2,
2. SSbetween =

∑N
i=1(x̄g − x̄)2,

3. SSwithin =
∑N

i=1(xi − x̄g)2,

where x̄ is the grand mean and x̄g is the group mean.

We can think of SStotal as representing the total variation, SSbetween as the variation between the group and
the grand mean, and SSwithin as the variation within each group. Note that SStotal = SSbetween + SSwithin.
If we think of the independent variable (i.e., the grouping variable) as the explanatory variable, then SSbetween

represents the variation we can explain, and SSwithin represents the variation that we cannot explain.

Control

x x− x̄ (x− x̄)2 x̄ctrl − x̄ (x̄ctrl − x̄)2 x− x̄ctrl (x− x̄ctrl)2

10 4.5 20.25 2.5 6.25 2 4
8 2.5 6.25 2.5 6.25 0 0
6 0.5 0.25 2.5 6.25 -2 4
8 2.5 6.25 2.5 6.25 0 0

SStotal = 33 SSbetween = 25 SSwithin = 8

Mindfulness

x x− x̄ (x− x̄)2 x̄mind − x̄ (x̄mind − x̄)2 x− x̄mind (x− x̄mind)2

4 -1.5 2.25 -2.5 6.25 1 1
4 -1.5 2.25 -2.5 6.25 1 1
2 -3.5 12.25 -2.5 6.25 1 1
2 -3.5 12.25 -2.5 6.25 1 1

SStotal = 29 SSbetween = 25 SSwithin = 4
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Conversation

x x− x̄ (x− x̄)2 x̄conv − x̄ (x̄conv − x̄)2 x− x̄conv (x− x̄conv)2

5 -0.5 0.25 0 0 -0.5 0.25
6 0.5 0.25 0 0 0.5 0.25
5 -0.5 0.25 0 0 -0.5 0.25
6 0.5 0.25 0 0 0.5 0.25

SStotal = 1 SSbetween = 0 SSwithin = 1

Now we can sum across the groups.

SStotal = 33 + 29 + 1 = 63
SSbetween = 25 + 25 + 0 = 50
SSwithin = 8 + 4 + 1 = 13

Degrees of Freedom
For each group, we will calculate df in three different ways.

1. dftotal = N − 1,
2. dfbetween = k − 1,
3. dfwithin = N − k,

where N is the sample size and k is the number of groups.

Note that dftotal = dfbetween + dfwithin. For our problem, we have

dftotal = 12 − 1 = 11
dfbetween = 3 − 1 = 2
dfwithin = 12 − 3 = 9.

Mean Square and the F-statistic
Mean square is a correction to sum of squares that takes into account the degrees of freedom.

MS = SS

df

As in sum of squares and degrees of freedom, we can calculate the mean square separately between and within
groups.

1. MSbetween = SSbetween

dfbetween

2. MSwithin = SSwithin

dfwithin

The F -statistic is the ratio of mean square between to mean square within,

F = MSbetween

MSwithin
= SSbetween/dfbetween

SSwithin/dfwithin
.

In our example, we have
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MSbetween = 50/2 = 25
MSwithin = 13/9 = 1.44

F = 25/1.44 = 17.36.

Using our above conceptual definition of sum of squares, we can think of this as being the ratio of what
we can explain (using the independent variable) to what we cannot explain. It is helpful to put all of this
information in a chart.

Source SS df MS F
between 50 2 25 17.36
within 13 9 1.44
total 63 11

p-value
As with other inferential statistics, a given value of the F -statistic has an associated p-value.

In our example, we have p = .0008. Thus, we can reject the null hypothesis. This means that we have
evidence that the population means are not equal. However, we still cannot say which population mean is
different from which other population mean.

Statistical Assumptions
There are three main assumptions for a between-subjects one-way ANOVA. These assumptions are a
generalization of the same assumptions for the t-test.

1. homogeneity of variance (i.e., the population variances are equal)
2. the errors are normally distributed
3. the errors are independent

ANOVA Using R
First, I will put the data in R.
df <- data.frame(

condition = c(rep("control", 4), rep("mindfulness", 4), rep("conversation", 4)),
anxiety = c(10, 8, 6, 8, 4, 4, 2, 2, 5, 6, 5, 6)

)

print(df)

## condition anxiety
## 1 control 10
## 2 control 8
## 3 control 6
## 4 control 8
## 5 mindfulness 4
## 6 mindfulness 4
## 7 mindfulness 2
## 8 mindfulness 2
## 9 conversation 5
## 10 conversation 6
## 11 conversation 5
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## 12 conversation 6

For completeness, I will get descriptive statistics and create a plot, though I will not comment further on
either.
# import packages
library(psych)
library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --

## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.6
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.2 v forcats 0.5.1

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x ggplot2::%+%() masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
# descriptive statistics
describeBy(df$anxiety, group=df$condition)

##
## Descriptive statistics by group
## group: control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 4 8 1.63 8 8 1.48 6 10 4 0 -1.88 0.82
## ------------------------------------------------------------
## group: conversation
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 4 5.5 0.58 5.5 5.5 0.74 5 6 1 0 -2.44 0.29
## ------------------------------------------------------------
## group: mindfulness
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 4 3 1.15 3 3 1.48 2 4 2 0 -2.44 0.58
# plot with additional customizations for future reference
ggplot(data = df, aes(x = condition, y = anxiety)) +

stat_summary(fun = "mean", geom = "bar") +
stat_summary(fun.data = "mean_se", geom = "errorbar", width = .3) +
scale_x_discrete(name = "Experimental Condition",

labels = c("Control", "Conversation", "Mindfulness")) +
scale_y_continuous(name = "Test Anxiety",

breaks = seq(0, 10, by=2),
limits = c(0,10)) +

labs(title = expression(bold("Figure 1.")~"Comparison of Means"),
subtitle = expression(italic("Note:")~"error bars represent 1 SE.")) +

theme_minimal() +
theme(plot.title = element_text(family = "Times", size = 12),

plot.subtitle = element_text(family = "Times", size = 12),
panel.grid.major.x = element_blank())
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Note: error bars represent 1 SE.

Figure 1. Comparison of Means

# you can use theme(plot.title = element_text(hjust = 0.5)) to center the title

The ANOVA will be calculated in two steps. First, we will create the model. Second, we will show the results
in a typical ANOVA table.
anova_model <- aov(anxiety ~ condition, data=df)
anova(anova_model)

## Analysis of Variance Table
##
## Response: anxiety
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 2 50 25.0000 17.308 0.0008236 ***
## Residuals 9 13 1.4444
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note a few things. First, there is some rounding error in the F -statistic, but the numbers otherwise match
exactly. Second, instead of the language between and within, R uses the name of the variable to indicate
between-group variability and residual to indicate the within-group variability.

Post hoc Tests
Now that we have a significant ANOVA, we must conduct follow-up tests to determine which groups are
different from which groups. Typically, we are interested in all-pairwise comparisons and we use a correction.
This is the same thing as conducting a separate t-test for each comparison, though the denominator will be
different than a traditional t-test. If we didn’t have a significant ANOVA, then it would be inappropriate to
conduct post hoc testing.
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I will show how to conduct post hoc tests using Bonferroni and Tukey corrections. I will also contrast this
approach with conducting separate traditional t-tests with the same correction applied.

In R, we can get the Bonferroni follow-up tests using the following command.
pairwise.t.test(df$anxiety, df$condition,

p.adjust.method="bonferroni")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: df$anxiety and df$condition
##
## control conversation
## conversation 0.0493 -
## mindfulness 0.0007 0.0493
##
## P value adjustment method: bonferroni

The resulting table shows three p-values, one for each comparison. As stated above, a Bonferroni correction
typically involves dividing alpha. However, the same thing can be accomplished by multiplying the p-values
by the number of tests conducted. To see that, let’s run it again with no correction.
pairwise.t.test(df$anxiety, df$condition,

p.adjust.method="none")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: df$anxiety and df$condition
##
## control conversation
## conversation 0.01644 -
## mindfulness 0.00023 0.01644
##
## P value adjustment method: none

If we look at the conversation v. control comparison, we can see that the Bonferroni corrected p-value
is 0.01644 × 3 = 0.0493 (with a small rounding error). This means that it is identical if we (1) run the
comparisons with no correction and use an alpha of .05/3 = .016 or (2) use the Bonferroni correction above
with an alpha of .05. In practice, you should always choose option 1 because it is conventional in our field.

Many researchers don’t like using a Bonferroni correction because it is overly strict in controlling the
experiment-wise alpha. There are many other options for post hoc tests, though the most common is the
Tukey’s HSD. This can be accessed in R using the following.
TukeyHSD(anova_model)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = anxiety ~ condition, data = df)
##
## $condition
## diff lwr upr p adj
## conversation-control -2.5 -4.872749 -0.1272515 0.0395847
## mindfulness-control -5.0 -7.372749 -2.6272515 0.0006122
## mindfulness-conversation -2.5 -4.872749 -0.1272515 0.0395847
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We would use an alpha of .05 for all Tukey comparisons. It is important to note that all p-values are smaller
when using the Tukey HSD instead of a Bonferroni correction. In general, we would say that Bonferroni is a
more conservative test, which means that it is less likely to lead to a type I error but will also be less likely to
show a true difference in population means.

At this point, you should wonder what is different between conducting multiple t-tests v. conducting an
ANOVA and then conducting the t-tests. In short, the significant ANOVA and the homogeneity of variance
assumption allows us to use the pooled denominator from all three groups; whereas, a traditional t-test would
use the pooled variance from only the two groups in that comparison. This is easier to see if we look at the
formula.

A traditional t-test uses a pooled standard error from the two groups.

SE =

√
s2

1
n1

+ s2
2
n2

The post hoc testing uses the mean square within from the ANOVA (corrected by the sample size for the two
groups in the comparison). Remember that this is pooled from all groups.

√
MSwithin( 1

n1
+ 1
n2

)

While this detail is technical and not necessarily important to memorize, I do think it is important to
understand it broadly.

In our example, regardless of which correction we use, we can say that there is evidence that all population
means are different. Thus, the students who performed mindfulness training experienced less test anxiety than
the students who had a conversation or were in the control group. Further, the students in the conversation
group were less anxious about the test than those in the control group.

Writing Results in APA Format
An one-way analysis of variance was conducted to test the effect of mindfulness on test anxiety. The test
revealed a significant difference between the 3 groups, F (2, 9) = 17.31, p < .001. Post hoc testing revealed
that participants in the mindfulness condition (M = 3.0, SD = 1.2) had less test anxiety than participants in
the conversation condition (M = 5.5, SD = 0.6) and the control condition (M = 8.0, SD = 1.6). Participants
in the conversation condition had significantly less test anxiety than those in the control condition.
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